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We derive the Lie symmetry vector fields for the linear wave equation Nu = 0 
and nonlinear wave equation Nu = u 3. The conformal vector fields for the 
underlying metric tensor field g are also given. We construct the conservation 
laws and derive similarity solutions. Furthermore, we perform a Painlev6 test 
for the nonlinear wave equation and discuss whether Lie-B~icklund vector fields 
exist. 

Lie s y m m e t r y  vec tor  fields are i m p o r t a n t  in the  s tudy  o f  l inear  and  
n o n l i n e a r  evo lu t ion  equat ions .  Wi th  the he lp  o f  the  Lie symmet ry  vec tor  

fields we can cons t ruc t  s imi la r i ty  so lu t ions  and  conserva t ion  laws (B luma n  
a n d  Cole ,  1974; A n d e r s o n  and  Ib rag imov ,  1979; Ovs iann ikov ,  1982; Olver ,  
1986; Steeb and  S t r ampp ,  1982; Graue l  and  Steeb,  1985). Moreove r ,  for  
re la t ivis t ic  f ield equa t ions  such as the D i rac  equa t ion ,  they  p l ay  an i m p o r t a n t  
role  in connec t ion  with  gauge  theory.  

In  the  p resen t  p a p e r  we give the L ie - symmet ry  vec tor  field for  the  l inear  
wave  equa t ion  

and  the n o n l i n e a r  wave equa t ion  

D u  = 0  (1) 

D u  = u B (2) 

where  []  3 2 2 2 2 = ~,i=~ 0 / O x i -  0 / O x 4 .  The unde r ly ing  met r ic  t ensor  field is given 
by  

g = d x l |  + dx2@dx2q- dx3@dx3 - dx4@dx4 (3) 
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1398 Euler and Steeb 

Equation (1) can be derived from 

d ( * d u )  = 0 (4) 

where d is the exterior derivative and * the Hodge-star operator (Steeb, 
1980). 

For Riemannian or pseudo-Riemannian manifolds the Hodge-star 
operator (duality operation) is defined on differential forms: * is an f-l inear 
mapping and transforms a ?-form into its dual (m - p ) - f o r m  (dim M = m). 
The * operator applied to a p-form defined on an arbitrary Riemannian (or 
pseudo-Riemannian) manifold with metric tensor field g is given by 

�9 (dxi, ^ dxi2 ^"  �9 �9 d % ) :  

= ~ g id ~ ..g,# 1 ~  g.g_ 
j,..j,,=, " ( m  - p ) !  ~ ej,...j,,, dxj~+, A'" "A dxj,,, (5) 

where ej~...j,, is the total antisymmetric tensor (el,2 ...... =+1 ) ,  g ~  det(go), 
and Y,j g'Jgjk = 6~ (Kronecker symbol). 

In the present case we have M =  ~4 with g given by equation (3) 
(Minkowski space) and the one-form 

so that 

and 

We then obtain 

where 

du= ~ o_u 
;=, Oxj dxj (6) 

4 O___~U 
*du = Z (*dx j )  (7) 

g=~ Oxj 

* d x  I = - d x  2 A d x  3 A d x  4 

* d x  2 = - d x  3 A d x  I A d x  4 

* d x  3 = - d x  4 A d x  1 A d x  2 

* d x  4 = - d x  1 A d x  2 A d x  3 

[O2U 32U ~2 u 02U~ 

~'~ = dx  I A dX 2 A dx  3 A dx  4 

is the volume element in Minkowski space. 

(8) 

(9) 

(10) 
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Before studying the Lie-symmetry vector fields it is helpful to find the 
conformal invariant vector fields ~ The conformal invariant vector fields 
are defined by 

L~g = p~g (11) 

for some ~ o  function Pr, where L r ( ' )  denotes the Lie derivative. The 
conformal  invariant vector fields for the metric tensor field (3) are given by 

0 
3 - -  p~ = 0 

Ox4 

0 
~ i = - -  Pe~=0, i = 1 , 2 , 3  

Oxi 

0 0 
Y~ = x i - - -  x j - -  p~,j=0,  i r j, i , j = 1 , 2 , 3  

Ox s Ox~ 

0 3 
~ i  = Xi ox~4"~- X4 ox7 p~i = O, i =  1,2,3 

O O O 0 
5 e = Xl - -  - -  - -  p~ = 2 

OX 1 nt- X 2 OX 2 q'- X 3 0 X  3 "[- X 4 OX 4 

( o )  
0 0 x3 ~x3 "~4 = 2X4 Xl OxT+ X2 0X-~2 -b 

0 2 2 2 2 + (X 1 +X 2 + x  3+X4) - -  p& = 4X4 
OX4 

o o __ 
~r = -2x i  ( x l  Ox~+ x2 axe+ x3 O OX 3 q- X 4 

2 2 2 2 _ _  
..~_(XI..I_X2.JI_X3__X4 ) 0 Oxi p~, = -4x i ,  i = 1, 2, 3 (12) 

The physical interpretation of the given vector fields (Lie group generators) 
is the following: 3- generates time translation; ~ space translation; ~ 
space rotation; 5r space-time rotations; and 5e the uniform dilatations 
(x ~ ex, e > 0). -r is the conjugation of 3- by the inversion in the unit 

....) 2 2 2 2 hyperboloid Q: (x) ( x ) / ( x ,  + x2 + x 3 -  x4), and the 5r are the conjugations 
of  the ~i by Q. 

Let us now consider the Lie symmetry vector fields for the linear wave 
equation (1). We adopt  the jet bundle technique (Steel and Strampp, 1982). 
Within this technique we consider the submanifold 

F -= ull + U 2 2  "}- U 3 3  - -  / / 4 4  = 0 (13) 
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where ux,=-ut, ux, x~=-u~, ux2=-u2, and so on. Together with F = 0  we 
consider all its differential consequences. This means 

F 1  ~ Ul  11 -~- u122  --}- 1g133 - u 1 4 4 ,  F 2  ~ u 112 -~ 19222 -t- ~/233 - 19244 

and so on. Let 

Vo=( -~=I  a i ( x ' u ) u i + g ( x ' u ) ) 2  (14) 

be the vertical Lie symmetry vector field of V. The invariance requirement 
is expressed as 

L ? F ~ O  (15) 

where Leo(" ) denotes the Lie derivative and ~ stands for the restriction 
to solutions of equation (1). I7 is the extended (or prolongated) vector field 
of V. For our case the Lie-symmetry vector fields V(x, u), for equation (1) 
with metric g, are given by 

V(x, u )=  ~V(x)+ V'(x, u) (16) 

where V'(x, u) is the component of the generator that considers the transfor- 
mation of  the field. We find LeoF = PeoF, where 

0 
T = - -  pzv= 0 

Ox4 

0 
P / -  pp~ = O, i =  1,2,3 

Ox~ 

0 0 R o = x i - - - x j - -  p~,j=O, i#j, i=1,2,3 
Oxj Oxi 

0 0 
Pc, = O, 

pg = - 3  

Li=xi_~Wx4-- i = 1 ,  2, 3 
~x4 

0 0 0 0 0 
. . . .  - - U - -  S -'~" X4 ox4dV Xl Oxl-~- X2 ox2"~- X3 ox3 OU 

( 0  0 00) 
I4 = 2x4 Xlox~lt-X2ox~2}-Xgox3 

2 2 2 2 ..[_(Xl..~ X2_~ X3.J_X4) 0 
Oxa 

- -  _ _  - - - 1 -  X4 L = 2xi Xl OX I -~ X2 OX 2 -~ X3 aX 3 ON 4 -~U 

2 2 2 0 
+ ( x ~ + x 2 + x 3 - x ] )  Oxi 

PT4 = -6x4 

p~=-6x~,  i = 1 , 2 , 3  

(17) 
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The commutat ion relations are presented in Table I. The commutat ion 
relations are given between the generators in the first column, with the the 
generators in the first row of Table I. They do form a Lie algebra, as they 
must. Note that [T, Pi] =0 ,  [P~, Pj] = 0  ( i , j  = 1, 2, 3). 

The nonlinear wave equation (2) admits the same Lie-symmetry vector 
fields as equation (1). 

The conservation laws can be derived by using the Cartan fundamental  
form. Again we use the jet bundle formalism. 

Let us briefly describe the approach.  Let M be an oriented manifold 
of  dimension m, with local coordinates xi and volume m-form f~ given in 
these coordinates by f~ = dx~ ^ dx2 ^ �9 �9 �9 ̂ dxm. Let N be an n-dimensional 
manifold with local coordinates uj and let (E, ~r, M)  be a fiber bundle with 
fiber N. The k jet bundle of  local sections of  (E, ~r, M)  is denoted by J k ( E ) .  

We have M = ~4, N = 5~, and (E,  m M )  ~ ( M  x N ,  pr~, M ) .  Since n = 
1, we put u -= ul. Let (xi, u) be a coordinate system on E and (x;, u, u~) the 
corresponding coordinates on J I ( E ) .  The Cartan fundamental  form (a 
4-form) defined on J I ( E )  is given by 

- - - u ~  f~ - - d u ^  l ~  (18) 
i=10Ui = Ol.'li 

where f~ = dx  1 ̂  dx 2 ^ dx  3 ^ d x 4 ,  .~ denotes the contraction, and L := J I (  E )  -> 
~.  In physics L is called the Lagrangian density. 

We can introduce the quantity 

H ( u ,  p~) = OL u 4 -  L (19) 
Ou4 

Table I. Commutation Relations 

R12 R23 R31 L 1 L 2 L 3 S 11 I 2 13 [4 

T 0 0 0 PI P2 P3 T 2L l 2L 2 2L 3 2S 
PI P2 0 -P3 T 0 0 Pl 2S -2R21 2R31 2L l 
P2 -P1 /93 0 0 T 0 P2 2R12 2S -2R23 2L 2 
P3 0 -P2 PI 0 0 T P3 -2R31 2R12 2S 2L 3 
Rl2 -R31 R23 - L  2 L I 0 0 - I  2 11 0 0 
R23 -R12 0 - L  3 L 2 0 0 -13 12 0 

R31 L 3 0 - L  1 0 13 0 --Ii 0 
L t R12 -R31 0 I 4 0 0 I 1 
L2 R23 0 0 14 0 12 
L 3 0 0 0 14 I3 
S 1i 12 13 14 
! L 0 0 0 

12 0 0 
x~ o 
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with the coordinates (x;, u, Pi), where pi := OL/Ou~. The quantity H is called 
the Hamiltonian density. 

For the linear wave equation we have 

L (  u 3  - ~ ~ 2 2 - ~(-ul  - u2 - u3+ u4) (20) 

and for the nonlinear wave equation 

L' (u ,  1 2 2 2 2, 1 4 
ui) = ~ ( - u l - u 2 -  (21) u3+ u4) -~u  

The Hamiltonian density for the nonlinear wave equation (2) is given by 

H ( u ,  1 2 2 2 2 1 4 
P,) = ~(P 1 + P2 + P3 + P4) + ~u (22) 

The Cartan fundamental form for the nonlinear wave equation (2) 
takes the form 

= - - - u i  f~+  - O L ' d u ^ d x l ^ ' " ^ d x i ^ ' " ^ d x 4  (23) 
i=1  Oui i=1 3ui 

The nonlinear wave equation (2) can be derived from the condition 

s * ( Z  A d O )  = 0 (24) 

where Z denotes the vertical vector field 

~ 0  
Z = Z - -  (25) 

3u 

and s: M ~  E is the section. We find 

Z A dO = Z (u  3 dx 1 ̂  dx 2 ̂  dx 3 ̂  d x  4 -  duj ^ dx  2 ̂  dx  3 ̂  dx  4 

q- dx1A du2 A dx3 A dx4 + dxl  A dx2 A du3 A dx4 

- d x  I A d x  2 A d x  3 A du4) (26) 

Therefore equation (24) gives the nonlinear wave equation (2). 
Since 

LK O = ds r (27) 

for the symmetry vector fields K given by equation (17), we obtain the 
conservation laws from s * ( r  K A | 

Finally we mention that Lie-B~icklund vector fields cannot be found 
for the nonlinear wave equation (2) (Steeb, 1984). Moreover, the nonlinear 
wave equation (2) does not pass the Painlev6 test [see Steeb and Euler 
(1988) for more details]. Owing to the symmetry vector field S, we know 
that equation (2) is scale invariant under x~ ~ e-~x~, u ~ eu. Therefore the 
Hamiltonian density scales like (Steeb and Louw, 1986) 

H ( ~ u ,  2p,) = e 4 H ( u , p , )  (28) 
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so that r = 4 and r = - 1  are the so-called resonances.  At the resonance r = 4 
the compatibility condit ion is not satisfied. 

With the help of  the Lie symmetry vector fields we can now also 
construct the similarity variables and the similarity ansatz. The similarity 
ansatz leads to ordinary differential eqquations. For example,  the group- 
theoretic reduction o f  the nonlinear equation with the help o f  the space-time 
translation gives a nonlinear ordinary differential equation which can be 
solved with the help of  elliptic functions. By making use of  the rotation 
group, the group-theoretic reduction gives a nonlinear ordinary differential 
equation which cannot be solved exactly [see Steeb et aL (1985) for more 
details]. 
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