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Lie-Symmetry Vector Fields for Linear and Nonlinear
Wave Equations
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We derive the Lie symmetry vector fields for the linear wave equation Ou =0
and nonlinear wave equation [lu =u>. The conformal vector fields for the
underlying metric tensor field g are also given. We construct the conservation
laws and derive similarity solutions. Furthermore, we perform a Painlevé test
for the nonlinear wave equation and discuss whether Lie-Backlund vector fields
exist.

Lie symmetry vector fields are important in the study of linear and
nonlinear evolution equations. With the help of the Lie symmetry vector
fields we can construct similarity solutions and conservation laws (Bluman
and Cole, 1974; Anderson and Ibragimov, 1979; Ovsiannikov, 1982; Olver,
1986; Steeb and Strampp, 1982; Grauel and Steeb, 1985). Moreover, for
relativistic field equations such as the Dirac equation, they play an important
role in connection with gauge theory.

In the present paper we give the Lie-symmetry vector field for the linear
wave equation

Ou=0 (1)
and the nonlinear wave equation
Ou=1u’ (2)

where (1=Y7_, 8°/9x} —9°/5x5. The underlying metric tensor field is given
by

g =dx; ®dx,;+ dx,® dx,+ dx; ® dx, — dx,® dx, (3)
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Equation (1) can be derived from
d(xdu)=0 (4)

where d is the exterior derivative and * the Hodge-star operator (Steeb,
1980).

For Riemannian or pseudo-Riemannian manifolds the Hodge-star
operator (duality operation) is defined on differential forms: * is an f-linear
mapping and transforms a p-form into its dual (m — p)-form (dim M = m).
The * operator applied to a p-form defined on an arbitrary Riemannian (or
pseudo-Riemannian) manifold with metric tensor field g is given by

#(dx; Adx, nc e dx; ):

= Z g'IJI N g'plp———— & . dx. LATA dx-m (5)
Jreim=1 (m—p)! /|g| Jied ip i
where ¢, ; is the total antisymmetric tensor (g, . =+1), g=det(g;),

and Y, g'g; = &) (Kronecker symbol).
In the present case we have M =R with g given by equation (3)
(Minkowski space) and the one-form

4 du
du=Y —dx 6
] ,—;axj X; (6)
so that
49
wdu=Y —u(*dxj) )
j=10%
and

xdx, =—dx, ndxz A dx,

wdx,=—dx; A dx, A dx,

*dxs=—dx, A dx, A dx, ®

wxdx, = —dx, A dx, A dx;
We then obtain

2 2 2 2
d(*du)=—(§;%+g—g+§x—l§—§7;>ﬂ 9)

where

Q=dx, ndx,ndx;ndx, (10)

is the volume element in Minkowski space.
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Before studying the Lie-symmetry vector fields it is helpful to find the
conformal invariant vector fields ¥"(x). The conformal invariant vector fields
are defined by

Lyg=pyg (11)

for some ¥~ function py, where Ly(-) denotes the Lie derivative. The
conformal invariant vector fields for the metric tensor field (3) are given by

]
IT=— ps=0
0%y
a .
@iz— pg,',=0, l=1,2,3
ax;
d 9
R, =x,— — X, — a, =0, 1#j, Lj=1,2,3
ij o, 7 ox, Pa;; J J
d ]
$i=xi—+x4'— P§£-=0, l=1,233
09X, x; '
d 9 d 0
yle_+x2_+X3_+x‘;‘—_ py=2
90X 8X, 4% Xy
d ) a3
ﬂ4=2x4<x,——-+x2—+x3—)
le 9%, 8x3
2 2 2 2 d
+(xi+x3+x3+x5) —— Ps, = 4%,
0X4
d 3 0 d
f,.z—zx,-(xl—+x2—+x3—+x4——-)
ax, 4x, 8%;3 9%,
2,2, .2 .n 9 ,
+(x,+x2+x3-—x4);— ps,=—4x, i=1,2,3 (12)

The physical interpretation of the given vector fields (Lie group generators)
is the following: J generates time translation; %; space translation; R;
space rotation; £; space-time rotations; and & the uniform dilatations
(x> ex, £€>0). ¥, is the conjugation of J by the inversion in the unit
hyperboloid Q: (x)- (x)/(x;+ x5+ x3—x3), and the .%; are the conjugations
of the 2; by Q.

Let us now consider the Lie symmetry vector fields for the linear wave
equation (1). We adopt the jet bundle technique (Steel and Strampp, 1982).
Within this technique we consider the submanifold

FEu11+u22+u33—u44=0 (13)
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where u, =u;, u,,, =uy, #4,=u,, and so on. Together with F=0 we
consider all its differential consequences. This means

Fy=uy 4 s+ U3 — U, Fo=tya+ oy + Uozs — Unyy

and so on. Let
4 0
Vo= (- £ ats gt w) 2 (19
i=1 u

be the vertical Lie symmetry vector field of V. The invariance requirement
is expressed as
Ly F20 (15)

where Ly, (-) denotes the Lie derivative and 2 stands for the restriction
to solutions of equation (1). V is the extended (or prolongated) vector field
of V. For our case the Lie-symmetry vector fields V(x, u), for equation (1)
with metric g, are given by

Vix, u)=%(x)+V'(x, u) {16)

where V'(x, u) is the component of the generator that considers the transfor-
mation of the field. We find Ly F = py F, where

0

= - —:O
9% PT
a3 .
1)1.:— ppiZO, l=1,2,3
ax;
] d
R,=x; X~ z. =0, i#j, i=1,2,3
ij o%, Jaxl PR; J
a3 d
Lr_x1_+x4_ PE,-:O, l=1,2,3
X, ax;
9 3 3 ] 3
S=xy,—+x,—+tx,—Fx3 ——u_— ps=-3
9%, 0x,; 0X, 08Xy ou
d d 4 3
I4=2x4<x1—+x2———+x3—-——u—)
3%, 3%, 8x;  ou
d
+(xI+x3+xi+x)— pr,=—6x4
80X,
o d e} 0 d
L=2x |\, ——+x, —+x; —~tx;——u—
0x; 90X, 9X3 0Xy ou
d
+(xf+x§+x§-—xﬁ)—— pr.=—06x;, i=1,2,3

9x;

(17)
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The commutation relations are presented in Table I. The commutation
relations are given between the generators in the first column, with the the
generators in the first row of Table I. They do form a Lie algebra, as they
must. Note that [T, P,]=0, [P, P,]=0 (i,j=1,2,3).

The nonlinear wave equation (2) admits the same Lie-symmetry vector
fields as equation (1).

The conservation laws can be derived by using the Cartan fundamental
form. Again we use the jet bundle formalism.

Let us briefly describe the approach. Let M be an oriented manifold
of dimension m, with local coordinates x; and volume m-form () given in
these coordinates by ) =dx, Adx, A" - - A dx,. Let N be an n-dimensional
manifold with local coordinates u; and let (E, 7, M) be a fiber bundle with
fiber N. The k jet bundle of local sections of (E, 7, M) is denoted by J*(E).

We have M = %%, N=%R, and (E, w, M)= (M x N, pr,, M). Since n =
1, we put u = u,. Let (x;, u) be a coordinate system on E and (x;, u, u;) the
corresponding coordinates on J'(E). The Cartan fundamental form (a
4-form) defined on J'(E) is given by

4 4
@:(L—z%ui>n+zf’—£dm(—a—m> (18)
i=10U; i=1 OU; 0X;
where Q = dx, A dx, A dx; A dx,, 1 denotes the contraction, and L= J'(E)~
R. In physics L is called the Lagrangian density.
We can introduce the quantity

H(u,p)=7"u,— L (19)

3L
u

4

Table I. Commutation Relations

Ry, Ry Ry, L, L, Ly s I I 8 I,
T 0 0 0 P, P, P T 2L, 2L, 2L, 2§
P, P, 0 -P, T 0 0 P, 28 -2R, 2R, 2L,
P, -P P, 0 0 T 0 P, 2R, 28 2R, 2L,
P, 0 -P, P 0 0 T P, —-2R,, 2R,; 28 2L,
R, -R,, Ry -L, L, 0 0o -1 I, 0 0
R, ~Ry, 0 ~Ly L, 0 0 -1 I, 0
R, Ly 0 -L 0 I, 0 -1, 0
L, R, —Ry 0 I, 0 0 I,
L, Ry O 0 1, 0 I
L, 0 0 0 L I,
s I, I, I, I,
I 0 0 0
I, 0 0
I 0
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with the coordinates (x;, u, p;), where p, '=3L/3u;. The quantity H is called
the Hamiltonian density.
For the linear wave equation we have

L(u;) =3(—ui—us—ui+uj) (20)

and for the nonlinear wave equation
L'(w, w)) =3(—ui—uz—ui+ug) —qu (21)
The Hamiltonian density for the nonlinear wave equation (2) is given by
H(u, p) =3(pi+p>+p3+ps)+iu’ (22)

The Cartan fundamental form for the nonlinear wave egquation (2)
takes the form

4 gL’ 4 o 9L —
®=(L’— Y 8—u,~>Q+ Y (—1)'+‘8—du/\dx1/\- coAdx; A oadx,  (23)
= du, e u,

i=1 i

The nonlinear wave equation (2) can be derived from the condition

s¥(Z 1d0O)=0 (24)
where Z denotes the vertical vector field
~ 0

Z=7— (25)
ou

and s: M - E is the section. We find
Z 1d0O=Z(u® dx, ndx, ndxs A dx,— du, A dx, A dxs A dx,
+dxy A duy A dxs A dxy+ dxy A dx, A dus nodxy
—dx; A dx, A dxy A duy) (26)

Therefore equation (24) gives the nonlinear wave equation (2).
Since

Ly®=dt (27)

for the symmetry vector fields K given by equation (17), we obtain the
conservation laws from s*(£— K _10).

Finally we mention that Lie~-Bicklund vector fields cannot be found
for the nonlinear wave equation (2) (Steeb, 1984). Moreover, the nonlinear
wave equation (2) does not pass the Painlevé test [see Steeb and Euler
(1988) for more details]. Owing to the symmetry vector field S, we know
that equation (2) is scale invariant under x; > £~ 'x;, u - su. Therefore the
Hamiltonian density scales like (Steeb and Louw, 1986)

H(Eua Ezpi)=84H(u9 pz) (28)
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so that r =4 and r = —1 are the so-called resonances. At the resonance r =4
the compatibility condition is not satisfied.

With the help of the Lie symmetry vector fields we can now also
construct the similarity variables and the similarity ansatz. The similarity
ansatz leads to ordinary differential eqquations. For example, the group-
theoretic reduction of the nonlinear equation with the help of the space-time
translation gives a nonlinear ordinary differential equation which can be
solved with the help of elliptic functions. By making use of the rotation
group, the group-theoretic reduction gives a nonlinear ordinary differential
equation which cannot be solved exactly [see Steeb et al. (1985) for more
details].
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